

Mais eficiência e economia.

Introdução

As lavanderias industriais são um mercado em expansão. A maioria dos seus equipamentos utiliza vapor (direto e/ou indireto) e o consumo varia conforme o tipo de lavagem e o tipo de roupa.

As lavagens de higienização tem por objetivo eliminar a sujeira nos tecidos, são bastante utilizadas em hotéis e hospitais. Seu ciclo de lavagem é longo e depende do tipo de sujeira a ser removida.

As lavagens de tecido tem um objetivo estético, podendo deixá-lo mais macio, mais claro, etc... (lavagem stone, alvejamento). A duração do seu ciclo depende do efeito a ser obtido na roupa.

Todos os tecidos que não são jeans, são considerados roupa branca para efeito de lavagem.

Resumo do Processo

Após recebimento, as roupas são enviadas para as máquinas de lavar, são adicionados produtos químicos e a água é aquecida com vapor até a temperatura ótima de reação destes produtos. Inicia-se então o ciclo de batimento por um período pré-estabelecido.

Terminado o ciclo de lavagem a roupa vai para a centrífuga, é retirado o excesso de água, seguindo logo após para os secadores, onde é concluído o processo de secagem.

Uma vez seca, a roupa segue para a passadoria, que pode ser feita por ferros, prensas ou calandras e é realizado o acabamento final (ver fig. 1).

Fluxograma

- 1 Máquinas de lavar
- 2 Centrífugas

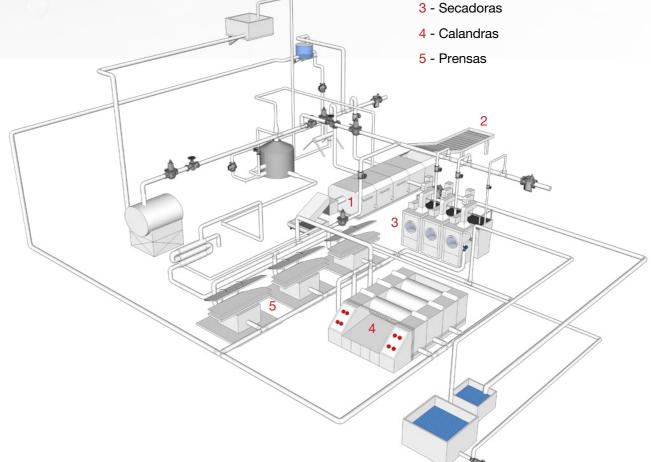


Fig. 1 : Fluxograma do Processo de Lavanderias Industriais

Lavagem

A lavagem é feita em máquinas de lavar que utilizam injeção direta de vapor para aquecer a água na temperatura desejada.

A injeção de vapor não é contínua, assim que a água atinje a temperatura desejada o vapor é desligado e inicia-se o processo de batimento que tem duração pré-estabelecida.

O range de pressão está entre 5 e 8 kgf/cm².

A lavagem pode ter vários ciclos, dependendo do tipo de lavagem desejada.

Como o vapor é injetado diretamente, deve-se instalar um filtro Y na entrada do equipamento para que junto dele não entre partículas indesejáveis (ver fig. 2).

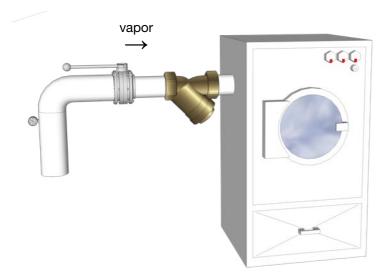


Fig.2: Utilização de vapor em máquinas de lavar

Secagem

As secadoras utilizam vapor indireto, por meio de radiadores. O tempo de secagem é pré estabelecido e diferenciado para cada tipo de roupa.

Os ranges de pressão e vazão variam conforme o fabricante e modelo do equipamento, a temperatura varia de 110 a 120 °C.

A presença de uma redutora de pressão visa reduzir a pressão de geração, normalmente alta, à pressão de trabalho adequada ao equipamento, normalmente baixa.

No sistema de drenagem o ideal é a utilização de um purgador de boia, pois além de possuir descarga contínua, garantindo eficiência e rapidez do processo, pode ser fornecido com eliminador de ar (ver fig. 3).

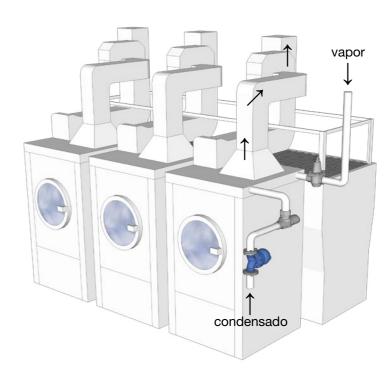


Fig. 3: Utilização do vapor em secadoras

A

Passadoria

A passadoria é feita em ferros a vapor, prensas e calandras.

Os ferros funcionam com vapor direto, pressão de 2 a 3 kgf/cm² e consomem de 3 a 4 kg/h de vapor por ferro.

As calandras utilizam vapor indireto e podem ser de dois tipos:

- Aquecimento por cilindro
- Aquecimento por prato

Funcionam com pressão de 3 a 4 kgf/cm² e consomem de 90 a 680 kg/h dependendo da quantidade de cilindros.

Como nas calandras é necessário reduzir a pressão de trabalho, deve-se instalar uma redutora de pressão. Na drenagem, o ideal é utilizar purgador de boia de descarga contínua, com eliminador de vapor preso, quando este é instalado com tubo pescador.

Também deve ser instalado eliminadores de ar (do lado oposto à entrada do vapor) nas camisas (ver fig. 4), para eliminar o ar destas.

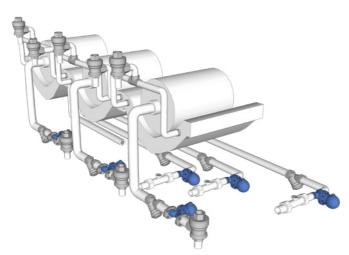


Fig.4: Utilização de vapor em calandras

As prensas utilizam vapor direto no prato superior e indireto no prato inferior. Opera com pressão de 3 a 7 kgf/cm² e consumo aproximado de 50 kg/h de vapor. Nas prensas, a drenagem é feita no prato inferior com purgador termodinâmico, pois este possui elemento termostático para eliminação do ar no início do processo (ver fig. 5).

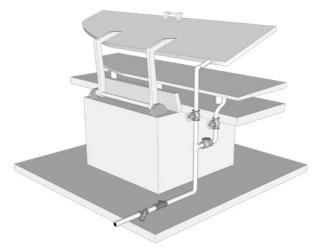


Fig.5: Utilização do vapor em prensas

Consumos aproximados

Máquinas de lavar

0.8 kg/h de vapor por kilo de roupa seca

Secadoras

1.5 kg/h de vapor por kilo de roupa seca

Prensas

de 40 a 50 kg/h de vapor

Ferros

de 3 a 4 kg/h de vapor

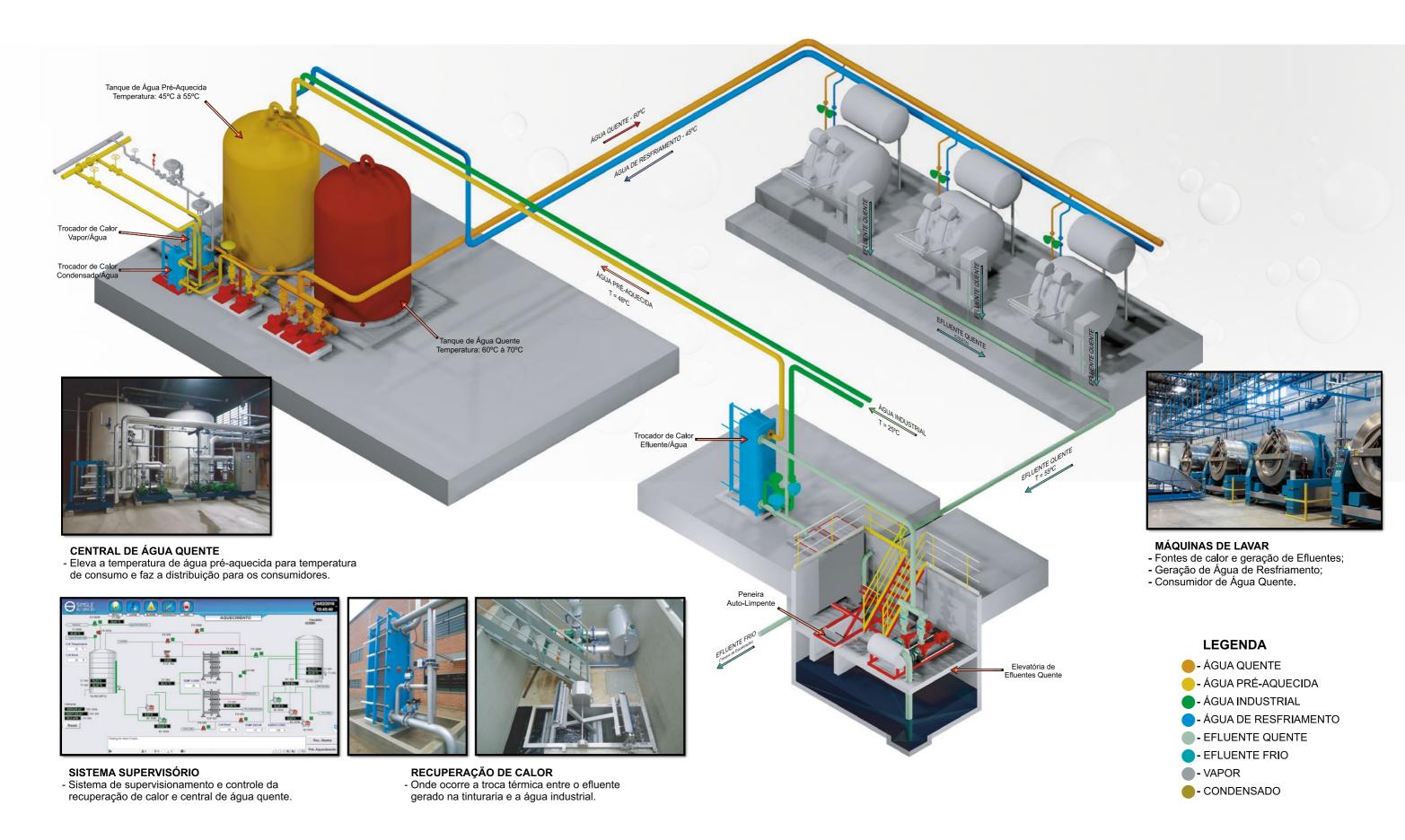
Calandras

1 cilindro - 90 kg/h de vapor

2 cilindros - 227 kg/h de vapor

3 cilindros - 363 kg/h de vapor

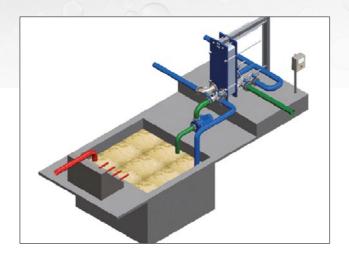
4 cilindros - 454 kg/h de vapor


5 cilindros - 567 kg/h de vapor

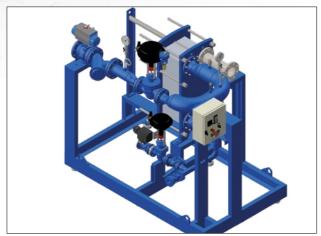
6 cilindros - 680 kg/h de vapor

6 7

Recuperação de energia e central de água quente.



8


Soluções avançadas para troca e recuperação de energia térmica.

BERMO SAVE

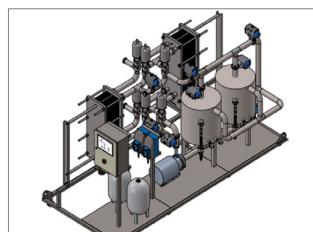
Sistemas de recuperação da energia do efluente.

Além da agilidade no resfriamento, um sistema de recuperação impacta também no tratamento biológico, com a possibilidade de eliminação de odores e a recuperação do calor contido no fluido, proporcionando uma economia de vapor para toda a fábrica.

BERMO TOTAL

Sistemas de aquecimento com vapor saturado.

Com os modelos de Trocadores de Calor especialmente desenvolvidos para o aquecimento, o Sistema Total Heat consegue ter um aproveitamento controlado da energia contida no vapor e no condensado, resultando em uma redução de até 14% no consumo de vapor quando comparado com sistemas convencionais, além de facilitar a remoção e o retorno de condensado do vapor, evitando efeitos como a cavitação e até perdas de energia na forma de vapor flash.


Projetos sob encomenda. Consulte-nos para mais informações.

myBermo

A melhor ferramenta de cálculo para seu dia a dia.

Um diagnóstico de tubulações, trocadores e válvulas é o cotidiano de operadores, engenheiros e muitos outros profissionais que lidam com a condução de fluidos, como vapor e água. Com a ferramenta myBermo, cálculos e dimensionais se tornam muito mais ágeis e precisos, podendo gerar relatórios completos por meio de uma base de dados constantemente atualizada.

BERMO SAVE E

Sistemas de recuperação da energia do efluente contaminado.

Com o Bermo Save E, você pode otimizar seu processo de tratamento dos efluentes e recuperar parte dessa energia, que normalmente é desperdiçada.

Pela possibilidade de contaminações e por ser um fluido agressivo, contamos com um sistema automático para limpeza e melhor funcionamento do processo.

10 11

Consulte-nos.

Matriz

Rua Maringá, 40 - CEP 89065-700 - **Blumenau-SC** 47 2123-4444 - bermo@bermo.com.br

Filiais

Chapecó-SC 49 3322-2177 bermocco@bermo.com.br Curitiba-PR 41 2111-4344 bermocwb@bermo.com.br Joinville-SC 47 3435-3635 bermojvl@bermo.com.br Rio Grande do Sul 51 3464-5159 bermopoa@bermo.com.br Salvador-BA 71 3512-4488 bermossa@bermo.com.br São Paulo-SP 11 2505-1500 bermosp@bermo.com.br